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Abstract Mental disorder is a serious public health concern that affects the
life of millions of people throughout the world. Early diagnosis is essential to
ensure timely treatment and to improve the well-being of those affected by
a mental disorder. In this paper, we present a novel multimodal framework
to perform mental disorder recognition from videos. The proposed approach
employs a combination of audio, video and textual modalities. Using recurrent
neural network architectures, we incorporate the temporal information in the
learning process and model the dynamic evolution of the features extracted
for each patient. For multimodal fusion, we propose an efficient late fusion
strategy based on a simple feed forward neural network that we call adap-
tive non-linear judge classifier. We evaluate the proposed framework on two
mental disorder datasets. On both, the experimental results demonstrate that
the proposed framework outperforms the state-of-the-art approaches. We also
study the importance of each modality for mental disorder recognition and
infer interesting conclusions about the temporal nature of each modality. Our
findings demonstrate that careful consideration of the temporal evolution of
each modality is of crucial importance to accurately perform mental disorder
recognition.

Keywords multimodal ·mental disorder · recurrent neural network ·machine
learning

1 Introduction

Mental disorder affects the well-being of millions of people throughout the
world. The exact number of individuals who suffer from some form of it is
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hard to quantify, but the World Health Organization (WHO) [1] reported
that almost 800 million people lived with a mental health disorder in 2017.
Mental disorders are generally associated with high mortality as well as car-
diovascular and respiratory diseases, diabetes, and some forms of cancer [2,3].
They are also reported to be the primary drivers of disability worldwide and
they negatively impact the length and quality of life [4]. Early detection is of
crucial importance in improving the overall well-being of those affected by a
mental disorder [5, 6]. Unfortunately, despite the existence of several Mental
Health Assessment Protocols (MHAPs), there is a significant delay in the di-
agnoses [7–9]. Such delays are highly associated with negative health outcomes
and they usually lead to sub-optimal treatments. The use of computational
models for the identification of mental disorders has gathered significant at-
tention in recent years [10–13]. These tools could be used to assist experts in
the diagnostic process, hence increasing the possibility to detect disorders at
their onset. However, some important aspects have not been fully addressed
in the current literature: 1) the natural language spoken by the interviewed
subjects is rarely incorporated in the final diagnosis, 2) the sequential (i.e
temporal) information provided in the video recordings is not fully exploited
and 3) current approaches are rarely validated on multiple datasets. In this
paper, we handle the aforementioned limitations by proposing a multimodal
temporal framework exploiting audio, video and textual modalities. The main
contributions of the paper can be summarised as follows:

1. A novel multimodal framework for human behavior analysis capable of
accurately performing bipolar disorder and depression recognition. The
proposed approach aims at modelling the temporal evolution of the par-
ticipants’ behaviours using recurrent machine learning models.

2. Experimental evaluation on two different datasets of mental disorders demon-
strating that the proposed framework outperforms other state-of-the-art
models.

3. A detailed analysis of the importance of each modality using a formulation
based on a classical question in computer science and combinatorics: the
Set Cover Problem.

2 Related Work

In this section, we present a literature review of the most common techniques
used for multimodal fusion. We also review the frameworks proposed in the
AVEC2018 [14] challenge which address the problem of mental disorder recog-
nition.
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2.1 Multimodal fusion

Generally, a modality indicates the way in which something is perceived or
experienced [15]. For instance, we are able to characterise the world around us
by hearing sounds, seeing objects, smelling odors, and so on. Similarly, multi-
modal machine learning [16] tries to fuse together, in a coherent and efficient
way, information originated from different modalities. There are different ways
in which multimodal fusion of data can be achieved: feature fusion (i.e vec-
tor concatenation), decision fusion (i.e majority voting), hybrid fusion which
exploits both, and deep learning fusion. In the context of deep learning fu-
sion, there are two main schemes: early fusion and late fusion. The former
is defined as a fusion scheme that integrates the individual modalities before
learning the concept. The latter is instead a fusion scheme where the modal-
ities are first reduced to separate concept scores, which are then integrated
to learn the final concept [17]. For instance, Song et al. [18] combined body
movements, facial micro-expressions, and audio signals to perform emotion
recognition. They compared three fusion schemes: early fusion, early fusion
with kernel CCA [19], and late fusion with voting. In their work, the late
fusion approach consistently outperformed the two early fusion approaches.
Dibeklioğlu et al. [20] achieved audio-visual fusion by performing feature con-
catenation. Min-Redundancy Max-Relevance algorithm [21] was then used on
the concatenated features to select the most relevant ones based on mutual
information. Alghowinem et al. [22] used hybrid fusion to combine features
from different modalities. In detail, they first concatenated feature vectors
and then performed majority voting. Two SVM classifiers [23] were used for
single modality classification and one SVM classifier for feature fusion classifi-
cation. Huang et al. [24] fused features from different modalities by separately
training long-short-term memory (LSTM) models and concatenating estimates
from different feature sets using Support Vector Regression (SVR) [25]. Their
method was able to obtain promising results in the Audio-Visual Emotion
Challenge [26].

2.2 Mental disorder recognition

Several mental recognition pipelines have been presented in the AVEC2017 [26]
and AVEC2018 [14] challenges. Yang et al. [13] proposed two novel features:
a histogram based arousal feature to characterize the mood swings typical of
bipolar patients, and a Histogram of Displacement (HDR) which describes the
speed of the upper body during movements. Along with these novel features,
they also employed Action Units and Geneva minimalistic acoustic parameter
set (GeMAPS) descriptors. Each feature was fed into a Deep Neural Network
(DNN) model where the output layer was discarded to concatenate all the
last hidden layers’ outputs into a single representation. After feeding the con-
catenated features into multiple tree-based classifiers, the final outcome was
obtained through a majority vote. Unfortunately, this approach fails to take
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into account the temporal information of the inputs; while the histograms are
able to correctly model the distribution of arousal and gestures for the sin-
gle frames, they do not capture the temporal relationships between frames.
In addition, the lack of any cross validation and the drop of performances
on the test set of this framework are clear symptoms of overfitting. Inspired
by the successes of DepAudioNet [27] and Inception Networks [28, 29], Du
et al. [30] proposed a new architecture, named IncepLSTM, for bipolar dis-
order recognition. By applying kernels of different sizes (1, 3 and 5) on the
temporal audio sequences, they were able to demonstrate the effectiveness of
IncepLSTM. However, by only taking into account the audio modality, the
proposed approach did not fully incorporate the multimodal information pro-
vided by the audio-visual recordings. Xing et al. [31] proposed a multimodal
hierarchical recall framework. It is composed of three layers, from “easy” to
“hard”. That is, starting in the first layer, subjects whose classification con-
fidence is higher than a predetermined threshold are directly assigned to the
corresponding category. Alternatively, the sample, named “unrecall sample”,
is sent to the next layer for further judgement. Each layer contains a Gradient
Boosted Decision Tree (GDBTs) [32] that uses different subsets of all features.
In this approach, all the modalities, audio-visual-textual, are used. Despite
the high accuracy on the training set, the poor performances on the testing
set seem to suggest that the model suffers from overfitting and it is unable to
generalize well to unseen data. Syed et al. [33] introduced the concept of “tur-
bulence features”. Turbulence features are used to capture the sudden, erratic
changes in the behaviour of individuals with bipolar disorder [33]. As input
signals, both visual and audio modalities were employed. They used Fisher
Vector (FV) to create descriptors able to provide global information about
the recordings and fed these descriptors into a Weighted Extreme Learning
Machine (WELM) classifier [34]. Despite the use of features able to capture
the evolution of different modalities, the proposed approach scored the lowest
accuracy in the AVEC2018 challenge. Finally, Zhang et al. [35] proposed a
deep learning multimodal framework based on early fusion strategy. Specifi-
cally, they used a Multimodal Deep Denoising Autoencoder in order to learn a
shared representation of audio-visual modalities. As in [33], Fisher Vector was
used in order to produce global descriptors for each video and Paragraph Vec-
tor (PV) was employed to embed the natural language spoken by the patients
during the interviews. Final classification was obtained using a Multitask Deep
Neural Network capable of integrating bipolar disorder stage classification with
Young Mania Rating Scale (YMRS) regression prediction. Despite obtaining
promising results, the framework proposed in [35] does not explicitly model
the temporal evolution of the frames in each video. Furthermore, the use of
early fusion strategy increases overfitting and reduces the generalisability of
the proposed framework.
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BD State
Number of recordings in
Train/Development Sets

Average
Time (s)

Standard
Deviation

Mania 41 / 21 276.4 246.3
Hypo-mania 38 / 21 221.1 171.4
Depression 25 / 18 151.9 65.4

Table 1 Statistics for the Train and Development sets of the Bipolar Corpus.

3 The Datasets

This section describes the two datasets used in this paper: the Bipolar Disorder
Corpus [12] and the Well-being dataset [36].

In [12], the Audio-Visual Bipolar Disorder (BD) Corpus was introduced. The
dataset, which was collected to shed light upon the personalized treatment of
BD patients, contains audio-visual recordings of patients with BD as well as
and healthy controls. In detail, 35 male and 16 female patients were recruited
from the mental health department of a hospital [12]. Clinical information,
including identity, age, disease severity, and used treatments, were collected
using semi-structured interviews. The recordings are annotated for BD state
(mania, hypo-mania, depression) as well as for Young Mania Rating Scale
(YMRS) [37] by psychiatrists. During hospitalization, in every follow up day
(0th- 3rd- 7th- 14th- 28th day), the presence of BD was annotated and interviews
recorded. In each video, the participant is asked to explain the reasons to par-
ticipate in the activity, to describe happy and sad memories, and to interpret
the emotions evoked by two paintings: one painting meant to inspire sadness
(Van Gogh’s Depression) and one meant to inspire happy feelings (Dengel’s
Home Sweet Home). Table 1 shows the number of samples, for each BD state,
in the training and development sets 1.

Orton [36] collected a non-clinical dataset designed to enable investigation of
the body modality for mental distress recognition named Well-being dataset.
Participants, recruited through the University of Cambridge, were interviewed
in face-to-face sessions by one researcher. To ensure a natural behaviour, par-
ticipants were not aware of the main research question of the study and they
were instead told that the recordings would be used for building models that
can help in mental well-being. Labels were assigned using self-evaluation ques-
tionnaires. In detail, the questionnaires used were: the PHQ-8 [38, 39] for de-
pression, GAD-7 [40] for anxiety, SSS-8 [41] for somatic symptoms, and the
PSS [42] for perceived stress. The dataset contains facial expressions, body mo-
tion information, gestures, and audio recordings for a total of 35 interviewed
subjects.

1 the test set is not accessible as it is reserved for evaluation in the AVEC 2018 Workshop
and Challenge [14].
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4 Methodology

In this section, we describe our proposed multimodal temporal framework for
mental disorder recognition. In the following subsections, audio and visual
modalities are grouped together as they are extracted at frame-level while the
text modality is processed on session-level. Figure 1 shows an overview of the
proposed framework.

Fig. 1 Overview of the proposed framework. The audio and visual modalities are encoded
using bidirectional LSTM models. The descriptors for the whole videos are generated using
Fisher Vector. For the textual modality, Paragraph-Vector is proposed. A final deep classifier
is used to combine the unimodal predictions.

4.1 Audio-Visual modalities

Bidirectional Long Short-Term Memory autoencoders are proposed for the au-
dio and visual modalities. Since a video is described by a sequence of frames,
each of these frames is highly correlated to the previous and next ones. As
such, LSTM autoencoders (and even more bidirectional LSTM autoencoders)
are a suitable solution to reduce the dimensionality of these modalities while
taking into account the temporal/sequential nature of the inputs. To avoid
normalisation which could wrongly corrupt the input modalities, the LSTM
autoencoders were trained using mean absolute error (MAE) and linear acti-
vation function in the output layer (Figure 2). Before feeding the audio and
visual modalities to the LSTM autoencoders, we propose two processing steps:
dynamic computation and feature serialisation.
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4.1.1 Dynamic computation

Firstly, inspired by [43] and [35], we compute the dynamic changes between
subsequent frames. Let us consider a modality represented as a matrix H ∈
Rn×d, where n is the number of frames and d the feature dimension. Denoting
each column in H as Hi with i ∈ {1, 2, . . . , d}, we compute the first order
dynamic, V , as Vi = dHi

dt ≈ Hi − Hi−1. Hence, V represents the velocity of
change between subsequent frames. The use of dynamic changes rather than
static features allows to emphasise the temporal evolution of audio and visual
modalities.

4.1.2 Feature serialisation

In 1992, Ambady et al. [44] introduced the concept of thin-slicing. Thin-slicing
is an established concept in psychology and philosophy which describes the
ability of identifying patterns or extracting relevant information in thin slices
of experience. Thin slices of individuals’ behaviours could reveal important as-
pects of their personalities like cognitive ability [45], sexual preference [46] and
personality disorders [47]. Using the idea of thin-slicing, in the next prepro-
cessing step, we serialise the (dynamic) audio and visual features using a stride
of one and experimenting with several sliding windows. Focusing on smaller
segments of the videos (thin slices) allows for more accurate identification of
patterns and permits to study the extent to which different modalities have
to be observed to produce accurate predictions.

4.1.3 Fisher Vector

The encoded representation learned by the dynamic autoencoders only pro-
vides a per-frame description. However, patient labels (i.e presence of depres-
sion, bipolar state, and so on) are usually provided for an entire video. In
order to unify these per-frame representations into a coherence whole-video
descriptor, we propose the use of Fisher Vector (FV) [48]. FV characterises a
sample by its deviation from a generative model of the data (in most cases a
Gaussian Mixture Model). The deviation is defined as the gradient of the sam-
ple log-likelihood with respect to the parameters of the generative model [48].
In addition, inspired by [49], we implement power normalization and L2 nor-
malization to generate the Improved Fisher Vectors (IFVs) as the session-level
descriptors in the proposed framework. Using the information gain given by
Equation (1) and a tree-based model (Random Forest), we perform feature
selection to reduce the redundancy of each modality.

Finally, we use a RF model on the audio and visual features (separately) for
the final classification.

Gain(S,A) = Entropy(S)−
∑

v∈V alues(A)

|Sv|
|S|

Entropy(Sv), (1)
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Fig. 2 Bidirectional LSTM. Two layers, one backward and one forward, are used to exploit
information from past and future states simultaneously.

Model
Parameters PV-DBOW PV-DM

Aggregation method – {average, concatanation}
Vector size {25, 50, 75, 100} {25, 50, 75, 100}

Window size – {5,10}
Negative words {5, 10} {5, 10}

Hierarchical sampling {yes, no} {yes, no}

Table 2 Parameters explored for the Paragraph Vector models.

4.2 Textual modality

Using the Speech-to-Text Google API 2, we convert the audio of the interview
sessions to transcripts. Paragraph Vector (PV) [50] is proposed to learn a
fixed-length representation from these variable-length pieces of texts. PV con-
sists of two main architectures: Distributed Memory Model Paragraph Vector
(PV-DM) and Distributed Bag of Words Paragraph Vector (PV-DBOW). The
former aims at predicting the current word using its surrounding word and its
paragraph vector, while the latter tries to predict randomly sampled words
from that document given the document ID as input. Experimental results
in [50] demonstrated that PV-DM works well for most of the tasks and it
consistently outperforms PV-DBOW. Moreover, the authors suggested that
a combination of PV-DBOW and PV-DM might reach better performances
on some tasks. The hyperparametrs explored for the textual modality are re-
ported in Table 2. The PV embeddings are fed to a Random Forest Classifier
to perform mental disorder classification.

2 https://cloud.google.com/speech-to-text

https://cloud.google.com/speech-to-text
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4.3 Multimodal fusion

For the multimodal fusion, we develop a novel temporal framework based on
late fusion. Given the predictions of each modality, a simple feed forward neu-
ral network (NN) is employed for multimodal integration. This network takes
as input the class probabilities predicted from each modality using the Ran-
dom Forest models. Specifically, the probabilities estimated by each modality
for the same sample are concatenated and they form the representation for
that sample in the NN. As such, the dimensionality of the input matrix to
the NN is (N × P ), where N is the number of samples, and P is the prod-
uct between the number of classes of the target variable and the number of
modalities used. This formulation allows to represent each sample with few,
albeit useful, features. Using adaptive learning of the weights, the NN is able
to learn more complex non-linear functions that map the input to the output.
We call this NN, which integrates the different modalities to produce the final
prediction, adaptive non-linear judge classifier.

5 Experimental evaluation

In this section, we present the results of the proposed framework on the Bipolar
Disorder Corpus and on the Well-being dataset. For every dataset, we present
the features extracted and the evaluation metrics used. We firstly evaluate our
model using every modality separately then combining all modalities using
the late fusion strategy proposed in 4.3. We also analyse the dynamics of each
modality in the different datasets and study the relevance of each modality for
mental disorder recognition.

5.1 Bipolar Disorder Recognition

5.1.1 Features

The BD Corpus contains 104 recordings for training purpose, 60 recordings for
development (validation) purpose, and 54 recordings for testing. The label for
each patient is his/her bipolar status: remission, hypomania, or mania. Since
the labels for the 54 testing recordings are not publicly available, we only
focus on the training and validation samples. Specifically, while the training
set is used (as usual) for the estimation of parameters, the development set is
employed for testing. For each video, facial landmarks, head pose, eye gaze, and
action units are extracted as visual features using OpenFace 2.0 [51] at a rate
of 30 frame-per-second (fps). Mel Frequency Cepstral Coefficients (MFCCs)
and extended Geneva minimalistic acoustic parameter set (eGeMAPS) are
extracted as separate acoustic features using openSMILE [52] at 10 fps. Due
to the different nature extraction of MFCCs and eGeMAPS, we hypothesised
that these acoustic features could provide complementary, useful information
for our task. For more insight on these features, the interested reader is referred
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Modality Dimensionality

Facial Landmarks 136
Eye Gaze 6
Head Pose 6

Action Units 35
MFCC 117

eGeMAPS 69

Table 3 Features in Bipolar Disorder Corpus along with their dimensions.

to [53–55]. We aligned acoustic and visual modalities to make sure they are
extracted from the same time window by concatenating three contiguous audio
features (as they have the same duration as one visual feature). The audio and
visual features in the BD Corpus, along with their dimensions, are reported
in Table 3.

After computing the dynamic changes, we generated sequences of audio and vi-
sual features experimenting with different slides. Specifically, we implemented
a moving window with a stride of one and slides of 10, 30 and 60 frames
(corresponding to 1

3 of a second, 1 second and 2 seconds, respectively). For
the autoencoders, the amount of shrinkage depends on the size of the hidden
layer(s) connecting the encoder and decoder (defined as hidden ratio). Given
an input modality whose dimension is d, we experimented with three-layers
autoencoders which produce an encoded representation of size 0.2d or 0.3d.
We choose to compute the Fisher Vector (FV) using 16 and 32 kernels in the
Gaussian Mixture Models (GMM) as in [33, 35, 43]. Finally, for feature selec-
tion, 50 and 100 features have been empirically evaluated and five-fold cross
validation was used for the final classification.

5.1.2 Metrics

We scored each classifiers using common multiclass metrics: accuracy, un-
weighted average recall (UAR), unweighted average precision (UAP), and F1
score. In the following tables, the model which exhibits the best performance,
as an average of these four metrics, is shown in bold.

5.1.3 Unimodal results

Table 4 shows selected unimodal results for facial landmarks, eye gaze, head
pose, action units, MFCC and eGeMAPS. Overall, the use of 32 kernels for
the Fisher Vector resulted in better performances for all the visual modalities.
On the other hand, the hidden ratio and the number of features were usually
influenced by the length of the input. Longer sequences of frames usually
required more features and a bigger hidden ratio in order to be accurately
reconstructed. However, the most interesting finding is probably related to the
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Index Modality Timesteps Hidden ratio
GMM
kernels

Feature
number

Accuracy UAR UAP F1

(1) Landmarks 30 0.3 32 50 0.5333 0.5370 0.5489 0.5321
(2) Landmarks 30 0.3 32 100 0.6167 0.6190 0.6226 0.6173

(3) Eye Gaze 30 0.2 32 50 0.5833 0.5847 0.5873 0.5826
(4) Eye Gaze 30 0.2 32 100 0.5333 0.5344 0.5417 0.5372

(5) Head Pose 10 0.2 32 50 0.5500 0.5423 0.5578 0.5405
(6) Head Pose 10 0.2 32 100 0.5000 0.4841 0.5429 0.4606

(7) AUs 60 0.3 32 50 0.6000 0.5794 0.6022 0.5411
(8) AUs 60 0.3 32 100 0.6500 0.6323 0.6972 0.6167

(9) MFCC 60 0.2 16 50 0.6167 0.6032 0.6760 0.5953
(10) MFCC 60 0.3 32 100 0.8000 0.7989 0.8151 0.8040

(11) eGeMAPS 10 0.2 16 50 0.5500 0.5397 0.5761 0.5358
(12) eGeMAPS 10 0.3 16 100 0.6167 0.6005 0.6728 0.5833

Table 4 Selected results for the evaluation of audio-visual modalities. Different timesteps
result optimal for the different visual modalities suggesting diverse temporal intervals re-
quired for each modality to display. Facial Action Units (AUs) and MFCC exhibited the
best performance as visual and audio modalities, respectively.

nature of the modalities themselves. Experimenting with different sequences
of frames and evaluating their performances suggested that different visual
features are displayed in different temporal intervals. For instance, since the
strongest association between facial landmarks and bipolar disorder was found
when using landmark sequences of 1 second (30 frames), this temporal interval
is probably the accurate window for a “landmark action” to take place 3. While
1 second is also optimal for capturing an “eye gaze action”, in our experiments,
only 1

3 of a second (10 frames) was needed for a “head pose action” and 2
seconds (60 frames) for an “AU action”. Similarly, 2 seconds were needed to
identify an “MFCC action” and 1

3 of a second (10 frames) for an “eGeMAPS
action”.

Compared to audio and visual performance, the results in Table 5 suggests the
textual modality is less predictive of bipolar disorder. The poor performance
of the textual modality for bipolar disorder recognition is probably linked
to the limited size of the BD corpus. Although the natural language spoken
by the patients could be strongly associated to mental health disorders, pre-
training on external, large-scale textual resources is usually deemed necessary
for improving the model performances [56].

5.1.4 Multimodal results

Table 6 (1st and 2nd rows) shows the results of late fusion aggregation using
the 7 modalities (landmarks, eye gaze, head pose, facial action units, MFCC,

3 Analogously to the concept of thin-slice, we used the word “action” to refer to a piece
of relevant information – or change – about a modality (for instance an eyebrow raise or an
head shake) which can be captured in a small fragment of a video. We refer to “temporal
interval” as the (minimum) amount of time the video fragment has to last for in order to
capture that information.



12

Index Text Model
Vector

size
Window

size
Negative

words
Accuracy UAR UAP F1

(1) PV-DBOW 50 – 10 0.4333 0.4206 0.4500 0.4014
(2) PV-DBOW 75 – hs 0.5333 0.5212 0.5575 0.5125
(3) PV-DM (av) 75 5 hs 0.4833 0.4788 0.4799 0.4785
(4) PV-DM (av) 100 5 10 0.5333 0.5265 0.5333 0.5254
(5) PV-DM (conc) 25 10 hs 0.5167 0.5000 0.4952 0.4730
(6) PV-DM (conc) 50 5 10 0.3667 0.3492 0.2424 0.2855
(7) DBOW + DM (av) 50 10 10 0.5333 0.5185 0.5487 0.5005
(8) DBOW + DM (av) 100 10 hs 0.4833 0.4815 0.4861 0.4821
(9) DBOW + DM (conc) 50 10 10 0.4000 0.3810 0.2775 0.3182
(10) DBOW + DM (conc) 100 10 hs 0.5167 0.5026 0.5556 0.4860

Table 5 Selected results for the evaluation of textual modality. hs = hierarchical softmax.
av and conc refer to the type of aggregation method: average or concatenation.

Integration
Method

Accuracy UAR UAP F1 score

Mean 0.8667 0.8545 0.8984 0.8562
Majority-voting 0.8667 0.8624 0.8722 0.8649

Adaptive Classifier 0.9167 0.8836 0.8857 0.8831

Table 6 Late fusion aggregation with mean, majority-voting, and adaptive non-linear judge
classifier. While mean and majority-voting exhibit similar performance, the adaptive non-
linear judge classifier is able to learn more complex mapping functions which result in better
performances.

eGeMAPS and textual embeddings) and two simple fusion methods: mean
and majority voting. These two non-adaptive aggregation methods show sim-
ilar performances on all the metrics. However, these methods are unable to
dynamically assign weights to the input modalities according to their rele-
vance for the target predictions. As shown in Table 6 (3rd rows), the adaptive
non-linear judge classifier neural network (NN) is able to learn more efficient,
albeit more complex, mapping functions which exhibit better performance. By
allocating appropriate parameters during the learning phase, the NN selects
the modalities to “trust” more and shows good predictive power of bipolar
status.

5.1.5 Modality importance

To study the dependencies of the modalities in the BD Corpus and their
relevance for prediction, we employed a simple formulation based on a classical
question in computer science and combinatorics: the Set Cover Problem
(SC). The problem is simple: given a set of elements U = {1, . . . , n}, called
universe, and a collection S of m sets whose union is equal to the universe,
find the smallest sub-collection of S which equals the universe. Formally:
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minimize
∑
S∈S

xS (minimize the number of sets)

subject to
∑

S:e∈S
xS ≥ 1,∀e ∈ U (cover every element of the universe) and

xS ∈ {0, 1},∀S ∈ S (every set is either in the set cover or not)
(2)

For our classification problem, we set the universe to be the union of all the
samples which were correctly classified by each modality and employed a brute-
force approach to find all the optimal solutions. Table 7 shows the sets of
modalities that have been identified as solutions for the SC problem. Out of
the 7 modalities, the minimal subset which allows for the correct classifica-
tion of all the samples in the universe only requires 4 modalities (although
different combinations of these are possible). From Table 7 it is evident that
facial landmarks allow for correct classification of samples for which all the
other modalities fail. As such, landmarks have been identified as a necessary
modality in all the SC solutions. For audio modality, MFCC is chosen in 8 out
of the 9 optimal solutions. The importance of MFCC is a reflection of the good
classification performance reported in Table 4. It is also interesting to notice
that one of the solutions only includes visual modalities (1st row of Table 7).
This suggests that visual features are complementary and their diversity al-
lows to capture useful, non-redundant information. Since 4 of the solutions
in Table 7 employed an audio-visual combination, and other 4 employed an
audio-visual-textual combination, it is possible to conclude that aggregation
of features originated from different communication channels usually benefits
the performance of prediction. Nonetheless, our evaluation suggested that a
careful combination of modalities is an important step to reduce redundant in-
formation and lower the computational burden of processing non-informative
modalities.

5.1.6 Comparison with state-of-the-art

We evaluated the proposed model against the baseline of the AVEC2018 Chal-
lenge [14] as well as the frameworks in Du et al. [30], Yang et al. [13], Xing et
al. [31], Syed et al. [33] and Zhang et al. [35]. All the aforementioned frame-
works, including the proposed one, were scored on the same test set, suggesting
the fairness of the following comparisons.

Table 8 shows that the proposed approach outperforms all the previous state-
of-the art methods reaching an accuracy of 0.916 and UAR of 0.883. From
Table 8, it is clear that the best performing frameworks employ an audio-
visual-textual combination. For instance, the works in [30] and [33] made use of
audio and audio-visual features respectively and they scored the lowest UARs
in the AVEC 2018 Challenge [14]. However, differently from the proposed
model, other frameworks only employed static features and failed to capture
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Set Cover Solutions
Landmarks, Action Units, Gaze, Pose

}
video

Landmarks, Action Units, Gaze, MFCC
video+audio

Landmarks, Action Units, Pose, MFCC
Landmarks, Pose, MFCC, eGeMAPS
Landmarks, Gaze, MFCC, eGeMAPS

Landmarks, Action Units, MFCC, Textual
video+audio

+text

Landmarks, Gaze, MFCC, Textual
Landmarks, Pose, MFCC, Textual

Landmarks, MFCC, eGeMAPS, Textual

Table 7 Set Cover Problem solutions. One of the solutions (1st row) only uses facial modal-
ities, suggesting that they contain complementary, useful information. While Landmarks is
present in all the solutions as a visual modality, MFCC is selected 8 out 9 times. Overall,
since 4 of the solutions employed an audio-visual combination, and other 4 employed an
audio-visual-textual combination, it is possible to state that fusion of features originated
from different modalities benefits the detection of mental illness.

Model Architecture UAR Accuracy

Baseline [14] audio-visual SVM 0.635 NA
Du et al. [30] audio LSTM 0.651 0.650

Yang et al. [13] audio-visual DNN 0.714 0.717
Xing et al. [31] audio-visual-textual GDBT 0.868 NA
Syed et al. [33] audio-visual WELM 0.635 NA

Zhang et al. [35] audio-visual-textual DDA 0.709 0.717
Proposed audio-visual-textual LSTM 0.883 0.916

Table 8 Comparison with the state-of-the-art on the BD Corpus. SVM = Support Vector
Machine. LSTM = Long Short Term Memory. DNN = Deep Neural Network. GDBT =
Gradient Boosted Decision Tree. WELM = Weighted Extreme Learning Machine. DDA =
Deep Denoising Autoencoder. The proposed approach exhibits better accuracy and UAR
compared to all the other frameworks on the same test set.

the temporal evolution of the modalities. Due to the lack of cross validation
and the use of early fusion schemes, the models proposed in [35] and [31] are
prone to overfitting and they poorly generalise to new data. Compared to the
AVEC2018 Challenge baseline [14], our model improves upon UAR by 26.84%.
The good classification performance of the proposed framework suggests that
modelling the dynamic and temporal information of the video recordings and
using an adaptive late fusion strategy can be successfully used for predicting
bipolar disorder status.
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5.2 Depression Recognition

5.2.1 Features

For the 35 participants in the Well-Being dataset, we used the same features
as extracted by [57]. Table 9 shows the modalities and their dimensions. The
target variable for this dataset is a continuous value of self-reported depression
(in the range [0, 19]). Similarly to [57], we converted these continuous values
into binary classes using a threshold of 7. The textual modality is not used to
fairly compare the proposed framework and the work in [57].

Modality Dimensionality

Fidget 9
Gaze 8

Action Units 35
MFCC 13

Table 9 Features in the Well-Being dataset and their dimensions.

5.2.2 Metrics

We evaluated each classifiers using common binary metrics: accuracy, recall,
precision, and F1 score. All results on the Well-Being dataset are calculated
as the mean of three-fold cross validation results.

5.2.3 Unimodal results

Overall, all the modalities exhibited good predictive performance for the bi-
nary depression label. From Table 10, it is evident that the performances are
generally worse when the number of selected features is high (≥ 200). In-
deed, all the modalities reached the best performance when using 50 or 100
features. This is probably due to the overfitting of the models when many non-
informative features are used. Similarly to the results on the Bipolar Corpus,
the use of more GMM kernels was beneficial for the predictions. All the highest
scores in Table 10 were obtained with 32 kernels. More interestingly, action
units, eye gaze, and MFCC exhibited best performances with window sizes of
60, 30, and 60 frames respectively. These findings match the results obtained
on the Bipolar Corpus for the same modalities (§5.1.3). This further indicates
that different features are displayed in different temporal intervals, and careful
consideration of such intervals is crucial for good predictions. Moreover, these
results have allowed identifications of different quantitative intervals which
seemed to be optimal for each modality. No existing work, that we are aware
of, analytically quantified the time required for distinctive features to display,
especially in the mental health domain.
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Index Modality Timesteps Hidden ratio
GMM
kernels

Feature
number

Accuracy Recall Precision F1

(1) AUs 60 0.4 32 50 0.7489 0.6136 0.7350 0.7818
(2) AUs 60 0.4 32 100 0.7027 0.7652 0.7474 0.8056

(3) Fidget 10 0.4 32 50 0.6724 0.6162 0.8197 0.6938
(4) Fidget 10 0.4 32 100 0.7359 0.5934 0.8463 0.6431

(5) Eye Gaze 30 0.4 32 50 0.6869 0.7980 0.6379 0.7621
(6) Eye Gaze 30 0.4 32 100 0.6241 0.5934 0.7167 0.6551

(7) MFCC 60 0.4 32 50 0.7179 0.7096 0.6530 0.7652
(8) MFCC 60 0.4 32 100 0.6378 0.7071 0.7835 0.6858

Table 10 Selected results for the evaluation of modalities on the Well-Being dataset. Differ-
ent timesteps result optimal for the different modalities suggesting diverse temporal intervals
required for each feature to display. In line with the findings reported for the BD Corpus,
action units (AUs), eye gaze, and MFCC exhibited best performances with window sizes of
60, 30, and 60 frames respectively. Among all the features, Facial Action Units (AUs) had
the best performance.

Integration
Method

Accuracy Recall Precision F1

Mean 0.8438 0.8451 0.8438 0.8436
Majority-voting 0.7812 0.7882 0.7976 0.7804

Adaptive Classifier 0.858 0.883 0.867 0.870

Table 11 Late fusion aggregation with mean, majority-voting, and adaptive non-linear
judge classifier. The adaptive non-linear judge classifier is the best performing feature ag-
gregation method due to its ability to dynamically assign weights to each modality according
to their relevance for the final predictions.

5.2.4 Multimodal results

As baseline, we first computed the multimodal results using majority-voting
and mean as feature aggregation methods. Results are shown in Table 11 (1st

and 2nd rows). Using the mean of the probabilities computed by the unimodal
models seems to perform better compared to majority-voting. As before, we
further evaluated the performance of the adaptive non-linear judge classifier
neural network (NN) for multimodal fusion (Table 11 3rd row). The use of
an adaptive classifier exhibited better results compared to simple aggregation
methods like mean and majority voting. With accuracy of 0.858, recall of 0.883,
precision of 0.867 and F1 score of 0.870, this NN outperforms the other fusion
approaches on all metrics.

5.2.5 Modality importance

As for the Bipolar Disorder Corpus, we studied the importance of modalities
in the Well-Being dataset. However, since in this case we only employed 4
modalities, a simple visualisation allows to assess the relevance of each modal-
ity for distress classification. Figure 3 shows the percentage of samples that
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each modality was able to correctly classify as a Venn diagram. It is clear that
all the modalities capture complementary information and each modality uses
its diversity to correctly classify samples which all the others fail to classify.
From Figure 3, it appears that fidget features are the most successful (4.7%) in
extracting information which the other modalities fail to associate to psycho-
logical distress. This emphasises the importance of features extracted from the
body modality and it demonstrates the complementary of diverse modalities
(facial, body and audio features).

Fig. 3 Venn diagram for modality importance. Each modality captures useful information
that other modalities fail to associate to mental disorder (i.e each modality has a non-
overlapping percentage of samples which are correctly classified by that modality only).

5.2.6 Comparison with state-of-the-art

The current state-of-the-art approach is described in [57]. Since in [57] the
only reported metric is F1 score, we include the performance of the proposed
framework as measured by the same metric in Table 12 (for more complete
information about the performances the reader is referred to Table 11). Also
for distress recognition, with F1 score of 0.870, the proposed framework exhib-
ited very good performances and it outperformed the state-of-the-art approach
by 10.34%. Similar to [35], the framework in [57] uses early fusion and static
features. By modelling the dynamic evolution of the modalities, the proposed
model is able to extract more useful information and accurately perform de-
pression recognition.
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Model Architecture F1

Lin et al. [57] audio-visual DDA 0.787
Proposed audio-visual LSTM 0.870

Table 12 Comparison with the state-of-the-art on the Well-Being data. LSTM = Long
Short Term Memory. DDA = Deep Denoising Autoencoder. The proposed approach exhibits
better F1 score compared to the state-of-the-art model on the Well-Being data.

6 Conclusion and future work

In this paper, we presented a novel dynamic and multimodal framework to per-
form bipolar disorder and depression recognition from video recordings. Com-
bination of audio, video and textual modalities is suggested to fully exploit
all the information from the videos. By emphasising the dynamic context and
using LSTM models, we aimed at including the temporal information in the
learning process. Experimental evaluations on two different datasets showed
that the proposed framework outperforms other state-of-the-art approaches.
Since it successfully identified two types of mental disorder, bipolar disorder
and depression, the proposed framework could be easily generalised to other
datasets. Moreover, experimental evaluation allowed us to infer interesting
temporal properties of each modality. Specifically, by exploiting feature serial-
isation with multiple timesteps, we identified temporal intervals in which each
modality is most likely to be displayed. To the best of our knowledge, such
findings were never reported in the literature and could demonstrate useful for
future research in related fields.

In this paper, we experimented with simple three-layers LSTM autoencoders.
However, it is worthwhile to explore the use of more sophisticated architectures
like Attention-based LSTMs. Furthermore, since most datasets are composed
of multiple video recordings of the same patient at different points in time, it
would be useful to augment the final neural network with constraints that in-
corporate this domain knowledge. By informing the learning about “different
samples being the same patient” and constraining the output to be relatively
close for each of those samples could demonstrate beneficial for the final pre-
dictions.
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